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ABSTRACT: The presence and rates of total lightning are both correlated to and physically dependent 

upon storm updraft strength, mixed phase precipitation volume and the size of the charging zone. The 

updraft modulates the ingredients necessary for electrification within a thunderstorm, while the updraft 

also plays a critical role in the development of severe and hazardous weather.  Therefore utilizing this 

relationship, the monitoring of lightning rates and jumps provides an additional piece of information on 

the evolution of a thunderstorm, more often than not, at higher temporal resolution than current 

operational radar systems.   This correlation is the basis for the total lightning jump algorithm that has 

been developed in recent years.  

Currently, the lightning jump algorithm is being tested in two separate but important efforts.  

Schultz et al. (2014; this conference) is exploring the transition of the algorithm from its research based 

formulation to a fully objective algorithm that includes storm tracking, Geostationary Lightning Mapper 

(GLM) Proxy data and the lightning jump algorithm.   Chronis et al. (2014) provides context for the 

transition to current operational forecasting using lightning mapping array based products.   However, 

what remains is an end-to-end physical and dynamical basis for coupling total lightning flash rates to 

severe storm manifestation, so the forecaster has a reason beyond simple correlation to utilize the 

lightning jump algorithm within their severe storm conceptual models. 

 Therefore, the physical basis for the lightning jump algorithm in relation to severe storm 

dynamics and microphysics is a key component that must be further explored.  Many radar studies have 

examined flash rates and their relationship to updraft strength, updraft volume, precipitation-sized ice 

mass, etc.; however, their relationship specifically to lightning jumps is fragmented within the literature.  

Thus the goal of this study is to use multiple Doppler and polarimetric radar techniques to resolve the 

physical and dynamical storm characteristics specifically around the time of the lightning jump.   This 

information will help forecasters anticipate lightning jump occurrence, or even be of use to determine 

future characteristics of a given storm (e.g., development of a mesocyclone, downdraft, or hail signature 

on radar), providing additional lead time/confidence in the severe storm warning paradigm.    

 
                                                        

 Contact information: Christopher J. Schultz, NASA MSFC/UAH, 320 Sparkman Dr. Huntsville, AL, 35801, United States email: 

christopher.j.schultz@nasa.gov 
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INTRODUCTION 

The purpose of the total lightning jump algorithm (LJA) is to provide forecasters with an additional 

tool to identify potentially hazardous thunderstorms, yielding increased confidence in decisions within the 

operational warning environment. The LJA was first developed to objectively indentify rapid increases in 

total lightning (also termed “lightning jumps”) that occur prior to the observance of severe and hazardous 

weather (Williams et al. 1999, Schultz et al. 2009, Gatlin and Goodman 2010, Schultz et al. 2011).  

However, a physical and kinematic framework leading up to and through the time of a lightning jump is 

still lacking within the literature.  Many studies infer that there is a large increase in the updraft prior to 

or during the jump, but are not specific on what properties of the updraft are indeed increasing (e.g., 

maximum updraft speed vs volume or both) likely because these properties were not specifically observed.   

Therefore, the purpose of this work is to physically associate lightning jump occurrence to polarimetric 

and multi-Doppler radar measured thunderstorm intensity metrics and severe weather occurrence, thus 

providing a conceptual model that can be used to adapt the LJA to current operations. 

 

DATA AND METHODOLOGY 

This study takes advantage of multiple observational platforms through the use of a well-established 

polarimetric, multiple Doppler domain and total lightning observations in North Central Alabama (Fig. 1).  

These unique observations allow for three dimensional (3D) retrievals of velocity and total lightning 

mapping.  Furthermore, polarimetric radar information particle identification provides the volumetric 

growth/decay of precipitation sized ice (e.g., graupel, ice crystals) necessary for electrification.  

One of the primary radars used in this analysis is the University of Alabama in Huntsville’s 

Advanced Radar for Meteorological and Operational Research (ARMOR; Schultz et al. 2012, Knupp et al. 

2014).  ARMOR is a C-band, polarimetric radar located at the Huntsville International Airport (KHSV). 

ARMOR operates in simultaneous linear transmit and receive (also known as slant 45), and collects 

horizontal reflectivity (ZHH), radial velocity (Vr), spectrum width (SW), differential reflectivity (ZDR), 

correlation coefficient (ρhv), and differential propagation phase (Φdp).  

 

Figure 1. ARMOR-KHTX dual-Doppler domain (blue outline) and NALMA antenna locations (red markers)   
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Radar data were corrected for attenuation and differential attenuation (Bringi et al. 2001), and 

aliased velocities were unfolded using NCAR’s SOLO3.  Data were then gridded to a Cartesian 

coordinate system with a Cressman weighting scheme on a grid size of 300 x 300 x 19 using a resolution 

of 1 km x 1 km x 1 km using NCAR’s REORDER (Oye et al. 1995).   

Particle identification (PID) was performed using the polarimetric information from ARMOR.  

NCAR’s PID algorithm was utilized and tuned for C-band (Vivekanandan et al. 1999, Deierling et al. 

2008).   The primary hydrometeor type and property observed is the volume of graupel within the mixed 

phase region (-10°C to -40°C) where electrification is known to occur.  

Multiple Doppler analysis was performed between ARMOR and the Weather Service Radar-88D 

(WSR-88D) at Hytop, AL (KHTX).   In order to retrieve accurate vertical velocities, radar volume times 

between the two radars were required to occur within 2 minutes of each other.  This requirement reduces 

errors in vertical velocity retrieval. Using NCAR’s Custom Editing and Display of Reduced Information in 

Cartesian Space (CEDRIC; Mohr et al. 1986), dual-Doppler synthesis was performed with a manual input 

of storm motion. The variational integration technique was used for multi-Doppler synthesis to minimize 

errors within the retrievals (Matejka and Bartels 1998). This requires that the anelastic continuity equation 

is integrated from an upper and a lower boundary and vertical motion at these boundaries are set to 0 m s
-1

. 

Upward integration from the lower boundary condition occurs in the lowest three vertical levels of the 

grid space, and downward integration from the upper boundary occurs in the remaining vertical levels. 

Three dimensional total lightning information was collected by the NASA’s North Alabama 

Lightning Mapping Array (NALMA, Koshak et al. 2004, Goodman et al. 2005).  NALMA is a 11 station 

array operating between 76-82 MHz that is centered at the National Space Science and Technology Center 

on the campus of the University of Alabama-Huntsville. The peak power of very high frequency (VHF) 

radiation source points associated with electrical breakdown are collected every 80 μs.  These VHF 

source points are then recombined using a flash clustering algorithm developed by McCaul et al. (2009) to 

build flashes.  A flash must have a minimum of 10 VHF source points to be considered in this analysis.  

 Thunderstorms examined in this study were objectively tracked using output from the Thunderstorm 

Identification Tracking Analysis and Nowcasting algorithm (TITAN; Dixon and Wiener 1993).  These 

objective storm tracks provided a framework in which storm based characteristics (e.g., total flash rate, 

peak reflectivity, graupel volume, etc.) can be recorded with time, analyzed for trends and intercompared 

with each other for integrated, multi-platform storm analysis. 

Lightning jumps were objectively identified using the 2σ algorithm from Schultz et al. (2009; 

2011).  This technique uses 14 minutes of the thunderstorm’s recent flash rate history to understand if the 

current behavior of a storm’s flash rate is abnormal.  As outlined in Schultz et al. (2009, 2011), the 

algorithm is a 5 step process.   

 

1) The total flash rate from the 14 minute period is binned into 2 minute time periods, and the total 

flash rate is averaged. 

2) The time rate of change of the total flash rate (DFRDT) is calculated by subtracting consecutive 

bins from each other (i.e., bin2-bin1, bin3-bin2,… bin7-bin6).  This results in 6 DFRDT values with 

the units of flashes min
-2

. 
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3) Next the 5 oldest values are used to calculate a standard deviation of the population.  Twice this 

standard deviation value determines the jump threshold. 

4) If the remaining newest DFRDT time exceeds the jump threshold, a jump has occurred. A jump 

ends once DFRDT drops below 0 flashes min
-2

 as new data are collected. 

5) This process is repeated every two minutes as new total lightning flash rates are collected until the 

storm dissipates. 

 

In order for a jump to be valid, the total flash rate must exceed 10 flashes per minute. This threshold is 

used to mitigate smaller jumps in total lightning that commonly occur in ordinary convective storms (i.e., 

non-severe).  

The convective morphology of storms within this study includes isolated ordinary storms, 

multicellular convection, supercells (including tropical and low echo centroid storms), and quasi-linear 

convective systems (QLCS).   The purpose behind examining this spectrum of storms is to understand 

not only the physics and kinematics of severe storms, but also to understand what typically occurs in 

ordinary convection. A total of 18 events, with over 30 individual storms are used in this study; however, 

for this specific paper, only 4 lightning jumps will be discussed in detail.   

 

RESULTS 

 The following observations presented are from four jumps during which multiple Doppler, 

polarimetric and 3D total lightning coverage were all available.  These four events include a pulse severe 

hailstorm, non-tornadic supercell, a QLCS that produces copious amounts of large hail, and a typical 

multicellular severe storm that produces wind damage during the summer months.  Three of these jumps 

occur during the development stages of the severe convection (multicell, supercell, QLCS) while the 

fourth occurs after the convection has already matured.   

 

May 3, 2006 

 

 Data from this analysis was originally presented in Johnson (2009). Thunderstorms developed along 

the remnant of a decaying cold front stalled over the Lower Tennessee Valley during the afternoon of May 

3, 2006.  At 2130 UTC, a storm developed along this boundary in Madison Co. AL and drifted 

southward.  An objectively identified 2σ lightning jump occurred with this storm at 2144 UTC, as the 

total flash rate increases from 6 flashes min
-1

 at 2142 UTC to 19 flashes min
-1

 at 2144 UTC (Fig. 3a). 

During the 8 minutes prior to this lightning jump, the 10 m s
-1

 updraft volume exploded from 8 km
3
 to 202 

km
3
 while the 15 m s

-1
 updraft volume went from not existing within the storm to a volume of 90 km

3
 (Fig. 

3b).  Maximum vertical velocity nearly doubles during this same period, as the peak updraft speed 

increases from 12.2 m s
-1

 to 27.8 m s
-1

 (Fig. 3c).  Graupel volume also doubled during this period, 

increasing from 32 km
3
 to 79 km

3
 (Fig. 3d).  At 2154 UTC 1.9 cm hail was observed in North Huntsville 

10 minutes after the lightning jump.  
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Figure 2. Flash rate, updraft characteristics and graupel volume for a multicellular thunderstorm on May 3, 

2006.  Panel A) depicts total flash rate vs time, B) 10 and 15 m s
-1

 updraft and graupel volume and C) 

maximum vertical velocity during the previous 11 minutes leading up to the lightning jump.  The 

lightning jump is denoted by the red vertical bar.   

  

 

Figure 3. Flash rate, updraft characteristics and graupel volume for a supercell thunderstorm on April 10, 

2009.  Panel A) depicts total flash rate vs time, B) 10 and 15 m s
-1

 updraft and graupel volume and C) 

maximum vertical velocity during the previous 11 minutes leading up to the lightning jump.  The 

lightning jump is denoted by the red vertical bar.   

A)

)) 
B) 

C) 

A)

)) 
B) 

C) 
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April 10, 2009 

 

A number of supercells pounded the Southeastern US with severe weather on this day.  Specifically 

in the Tennessee Valley, at least 8 supercell storms produced hail to the size of baseballs, and 1 EF3 

tornado.  The storm examined here did not produce a tornado, but did produce hail up to 1.75 inches in 

diameter.  

The storm specifically studied is ideal for analysis because the first objectively identified 2σ 

lightning jump with this storm occurs at 1728 UTC as it transitioned from a non-severe convective 

element into a full-fledged supercell.   Figure 3 shows total lightning, graupel and updraft volume/speed 

trends near the time of the objectively identified lightning jump at 1728 UTC.  Here the total flash rate 

explodes from 10 flashes per minute to 40 flashes per minute within a span of 4 minutes (Fig. 3a).  

During this same period, dual Doppler analysis reveals that the 10 and 15 m s
-1

 updraft volume also 

increases dramatically during this period (Fig. 3b).   

Figures 4a-d show the 4 dual-Doppler times leading up to and through the lightning jump occurrence.  

At 1720 UTC the updraft at 6 km is fairly typical for an ordinary (i.e., non-severe) thunderstorm with a  

 

  

  

Figure 4. ZHH and updraft speed at 6 km from ARMOR-KHTX dual-Doppler analysis for four time 

periods leading up to and through the lightning jump time (a. 1720 UTC, b. 1724 UTC, c. 1728 UTC, d. 

1733 UTC).   

A)

)) 

B) 

C) D) 
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peak magnitude just over 10 m s
-1

 (Fig. 4a). By 1724 UTC, the peak updraft magnitude has increased 

significantly within the mixed phase region, now just over 20 m s
-1

 (Fig. 4b).  By 1728 UTC the updraft 

has increased again by a factor of 2 to over 40 m s
-1

 (Fig. 4c) and maintains its strength through 1733 UTC 

(Fig. 4d). These four panels also indicate that ZHH has also increased at this level during the same time 

period, which corresponds with the theory that an increase in precipitation-sized ice within the mix phase 

region enhanced charging and ultimately lightning production (e.g., Carey et al. 2000, Deierling et al. 

2008).  Furthermore, the storm’s mesocyclone developed immediately after the lightning jump (Stough et 

al. 2014), and a lightning hole was present 5 minutes after the lightning jump (Kozlowski and Carey 

2014). 

 

March 12, 2010 

 

 A QLCS on the morning of March 12, 2010 produced copious amounts of hail and high winds across 

Marshall, Jackson and Dekalb Counties in Alabama.  Damage included many trees down, windows 

blown out and holes in siding from hail being driven into the sides of homes.  The portion of the QLCS 

responsible for the damaging wind and hail swath intensified as it entered the ARMOR-KHTX 

dual-Doppler domain at 1500 UTC.   

 

  

 

Figure 5. Flash rate, updraft characteristics and graupel volume for the severe portion of a QLCS on 

March 12, 2010.  Panel A) depicts total flash rate vs time, B) 10 and 15 m s
-1

 updraft and graupel volume 

and C) maximum vertical velocity during the previous 11 minutes leading up to the lightning jump.  The 

lightning jump is denoted by the red vertical bar.   

A)

)) 

B) 

C) 



XV International Conference on Atmospheric Electricity, 15-20 June 2014, Norman, Oklahoma, U.S.A. 
 

 8 

 

The first 2σ lightning jump occurred within the damaging portion of the QLCS occurred at 1512 

UTC.  Here the total flash rate increased from 16 flashes per minute to 35 flashes per minute in two 

minutes (Fig. 5a).  Updraft volumes also spiked during this period from 119 km
3
 to 228 km

3
 for 10 m s

-1
 

updraft volume and 21 km
3
 to 71 km

3
 for 15 m s

-1 
updraft volume (Fig. 5b).  Also seen in Fig. 5b is the 

spike in inferred graupel volume within the mixed phase region (-10°C to -40°C) near the time of the 

lightning jump.  Graupel volume increased dramatically, from 75 km
3
 at 1503 UTC to 282 km

3
 by 1515 

UTC.  Interestingly, the maximum updraft speed did not increase, but remained steady between 1503 and 

1515 UTC, with a value of 21 m s
-1

 (Fig. 5c).  

It is unclear at this point the exact reasoning why the peak updraft remained constant and did not  

increase during the period leading up to the jump like in Figs. 3b and 4b, and further interrogation of the 

storm is necessary.  However, the lack of an increase in the peak updraft at the time of the lightning jump 

is not surprising because the particles responsible for charge separation have typical fall speeds less than 

5-10 m s
-1

.  Thus, within a region of peak updraft (e.g., > 20 m s
-1

) graupel and ice hydrometeors 

necessary for electrification have shorter residence times that inhibit precipitation growth and charging 

from rebounding collisions between riming graupel and cloud ice (e.g., MacGorman et al. 2008, 

Kozlowski and Carey 2014).  Updraft volumes (e.g., 10 or 15 m s
-1

) have more control on the ability for 

the storm to levitate because fall speeds of the precipitation ice-sized particles needed to facilitate 

development of a strong electric field capable for electrical breakdown are similar, allowing for longer 

residence times.  This hypothesis is also corroborated by previous studies that show that peak updraft 

speed is not always well correlated with the total flash rate (e.g., Kuhlman et al. 2006, Deierling et al. 

2008).    

Two additional jumps were observed within this section of the QLCS at 1550 UTC and 1602 UTC 

(not shown). Numerous hail reports between 0.75-1.75 inches were reported across Northeast AL between 

1500-1700 UTC and the amount of hail was so great that hail remained on the ground for several hours 

after the event. 

 

July 19, 2006 

 

 The thunderstorms on the afternoon of July 19, 2006 were fairly typical for the summer time across 

the Southeast US, where the main threat from the strongest storms of the day would be high winds.  The 

multicellular thunderstorm examined here developed near Fayetteville, TN, and eventually produced wind 

damage within city limits. Unfortunately, the volumetric coverage from ARMOR was not available for the 

first two lightning jumps associated with this storm, however, ARMOR began scanning the storm at 2041 

UTC, just prior to the observance of a third jump and subsequent severe weather.   

 At 2041 UTC when ARMOR volumetric scans began on the storm, the peak flash rate was 

already at 44 flashes per minute (Fig. 6a).  At 2045 UTC the flash rate had increased modestly to 48 

flashes per minute; however, by 2050 UTC, the total flash rate had peaked at 65 flashes per minute.   A 

lightning jump occurred in between these two volume times at 2047 UTC.   
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Figure 6. Flash rate, updraft characteristics and graupel volume for a multicellular thunderstorm on July 

19, 2006.  Panel A) depicts total flash rate vs time, B) 10 and 15 m s
-1

 updraft and graupel volume and C) 

maximum vertical velocity during the previous 11 minutes leading up to the lightning jump.  The 

lightning jump is denoted by the red vertical bar.   

 

Similar behavior in updraft volume was observed to the previous three cases in which the first 

lightning jumps with those storms were analyzed.  Figure 6b shows that both 10 and 15 m s
-1

 updraft 

volumes increased leading up to the jump time at 2047 UTC.  Here 10 m s
-1

 updraft volume increases 

from 156 km
3
 at 2041 UTC to 268 km

3
 at 2045 UTC.  Similarly, 15 m s

-1
 updraft volume increased from 

15 km
3
 at 2041 UTC to 32 km

3
 at 2045 UTC, eventually peaking at 51 km

3
 at 2050 UTC.   Unlike the 

March 12, 2010 case, graupel volume fell from 188 km
3
 to 150 km

3
 between 2041 and 2045 UTC before 

increasing once again at 2050 UTC to 237 km
3
.  Finally, maximum updraft speed remained steady at 20 

m s
-1 

leading up to and through the lightning jump (Fig. 6c).  Importantly, this final jump occurred prior 

to the manifestation of damaging winds at the surface that were observed between 2050 and 2108 UTC.    

 

CONCLUSIONS 

 

The results presented above highlight the following observations at the time of the lightning jumps 

analyzed: 

 

1) Increases in 10 and 15 m s
-1

 updraft volume are observed leading up to the time of the lightning 

jump on a variety of severe thunderstorm types (pulse, multicell, QLCS, supercell). 

A)

)) 
B) 

C) 
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2) Maximum velocity does not always increase in magnitude leading up to the jump, and can remain 

steady in magnitude or even decrease slightly. This observation is important to note because while 

updraft speed provides information on the largest particle size that can be lofted, it is the updraft 

volume that controls the amount of precipitation and the residence of hydrometeors within the 

storm.  Thus, the amount of precipitation lofted relates to precipitation loading leading to an 

increased potential for severe convective winds and particle residence time is a key factor in hail 

growth. 

3) Graupel volume is shown to increase dramatically with the total flash rate, but can lag the increase 

in updraft volume.   

 

` Currently, examination of non-lightning jump producing storms is being completed to compare with 

cases that contain objectively identified lightning jumps using 2σ, and other large increases in total 

lightning that may not be classified as objective lightning jumps (e.g., > 5 flashes min
-2

) in order to fully 

understand the physical relevance of the 2σ lightning jump algorithm. Ongoing work also continues to 

quantify relationships between lightning jumps and other intensity metrics such as Maximum Expected 

Size of Hail (MESH; Witt et al. 1998) and azimuthal shear (e.g., Smith and Elmore 2004) using an 

expanded dataset from Schultz et al. (2011), with the overall goal of providing probabilistic information 

on storm intensity based on physical and kinematic relationships.  Additional information on the 

relationships between lightning jumps, MESH and azimuthal shear can be found in Schultz et al. (2014; 

this conference) and Stough et al. (2014; this conference).  
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